New Edition: Updated to 2015 Exam Design Standards

PE Civil Exam Morning Session

E-book 120 solved problems for morning session

Abul K. Howlader, PE, MsCE

2015 PE Exam Standard Specification

PE Civil Exam E- Book120-Mix Questions \& Answers (pdf Format) For Breath Exam (Morning Session)

Breadth Exam (morning session): These practice exams contain 120 mixed questions and answers of five civil engineering areas. The five covered areas are construction, geotechnical, structural, transportation, and water resources \& environment.
Table Contents: No. of Problems Page
I. Project Planning: 12 4
II. Means and Methods: 9 16
18 25
III. Soil Mechanics:
IV. Structural Mechanics: 18 45
V. Hydraulics and Hydrology: 21 66
VI. Geometrics: 9 85
VII. Materials: 18 94
VIII. Site Development: 15 113
I. Project Planning: Number of Questions- 12
A. Quantity take- off methods
B. Cost estimating
C. Project schedules
D. Activity identification and sequencing

1. PROBLEM (Quantity take- off methods)

A borrow pit contour elevation shown in the figure has to be cut. What is the average volume to be cut from the borrow pit?

a. $\quad V=8330 \mathrm{yd}^{3}$
b. $\quad V=5660 \mathrm{yd}^{3}$
c. $\quad V=7530 \mathrm{yd}^{3}$
d. $\quad V=4400 \mathrm{yd}^{3}$

1. SOLUTION:

Volume, $\mathrm{V}=\Sigma[\mathrm{h}(\mathrm{i}, \mathrm{j}) \mathrm{n}] \times[\mathrm{A} /(4 \times 27)]$
$h(i, j)=$ Height in ft above a datum surface at row $\mathrm{i} \&$ column j $\mathrm{n}=$ Number of corners, $\mathrm{A}=$ Area of grid in ft^{2}
Area of each grid, $A=60 \times 60=3600 \mathrm{ft}^{2}$
$\mathrm{V}=[($ Height from $\mathrm{BM} \times$ No. of corners $+\ldots .)] \times.[(\mathrm{A} /(4 \times 27)]$
$V=[(4 \times 1+5 \times 2+6 \times 2+9 \times 1+7 \times 2+5 \times 1+9 \times 2+8 \times 4+4 \times 1+7 \times 3+3 \times 1)] x$ [(3600/(4x27)]
$=132 \times\left[(3600 /(4 \times 27)]=4400 \mathrm{yd}^{3}\right.$

Total Volume of Borrow pit, $\mathrm{V}=4400 \mathrm{yd}^{3}$

The Correct Answer is: (d)
20. PROBLEM (Temporary structures and facilities)

Determine the Factor of Safety for a braced cut in clay soil shown in Figure. Where, Length of braced cut, $L=15 \mathrm{~m}$, Clay soil, $\gamma=16 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{Nc}=5.14, \Phi_{1}{ }^{\prime}=0^{\circ}$ and $\mathrm{c}=40 \mathrm{kN} / \mathrm{m}^{2}$.
a 6.0
b 4.0
c $\quad 3.0$
d $\quad 5.0$

20. SOLUTION:

$\mathrm{L}=15 \mathrm{~m}, \mathrm{~B}=4 \mathrm{~m}, \gamma=16 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{Nc}=5.14, \mathrm{c}=40 \mathrm{kN} / \mathrm{m}^{2}$ and $\Phi_{1^{\prime}}=0^{\circ}$
$\mathrm{B} / \sqrt{ } 2=4 / \sqrt{ } 2=2.828>\mathrm{T}=2 \mathrm{~m}$
Or, $\mathrm{T}=2 \mathrm{~m}<\mathrm{B} / \sqrt{ } 2=2.828$
Hence, $\mathrm{B}^{\prime}=\mathrm{T}=2 \mathrm{~m}$ and $\mathrm{B}^{\prime \prime}=\sqrt{ } 2 \mathrm{~B}^{\prime}=2.828$ and surcharge, $\mathrm{q}=0.0$
F.S $=\left[\mathrm{Nc} \mathrm{c}\left\{\left(1+0.2 \mathrm{~B}^{\prime \prime} / \mathrm{L}\right)\right\}+\mathrm{cH} / \mathrm{B}^{\prime}\right] /(\mathrm{yH}+\mathrm{q})$,
F.S=[5.14 $\times 40\{(1+0.2 \times 2.83 / 15)\}+40 \times 5 / 2] /(16 \times 5+0.0)$
F.S= 3.917

The Correct Answer is: (b)

33. PROBLEM (Bearing Capacity)

Determine the ultimate load of a rectangular footing 6' $\times 4^{\prime}$ with eccentric as shown in the Figure. Where, the Soil Unit Weight, $\gamma=118 \mathrm{lb} / \mathrm{ft}^{3}$, Ultimate Bearing Capacity, $q^{\prime}{ }^{\prime}=3000 \mathrm{lb} / \mathrm{ft}^{2}, \mathrm{eB}=1.5^{\prime}$ and $\mathrm{eL}=1.75^{\prime}$.

a \quad 12.5 Kip
b $\quad 48.5$ Kip
c $\quad 8.5 \mathrm{Kip}$
d 31.0 Kip

33. SOLUTION:

Where, $\mathrm{eL} / \mathrm{L}=1.75 / 6=0.292>1 / 6$, and $\mathrm{eB} / \mathrm{B}=1.5 / 4=0.375>1 / 6$;
Therefore,
$B 1=B(1.5-3 e B / B)=4[(1.5-(3 \times 1.5 / 4)]=1.5 \mathrm{ft}$
$\mathrm{L} 1=\mathrm{L}(1.5-3 \mathrm{eL} / \mathrm{L})=6[(1.5-(3 \times 1.75 / 6)]=3.750 \mathrm{ft}$
Effective Area, $A^{\prime}=1 / 2(L 1 B 1)=1 / 2(1.5 \times 3.750)=2.81 \mathrm{ft}^{2}$
$q^{\prime}{ }_{u}=3000 \mathrm{lb} / \mathrm{ft}^{2}$
$\therefore Q_{u l t}=A^{\prime} \times q^{\prime}{ }_{u}=2.81 \times 3000=8430=8.43 \mathrm{Kip}$

Correct Solution is (c)

49. PROBLEM (Deflection)

Determine the deflection of the rectangular beam shown in the figure. A 20 Kips point load "P" is applied at its free end. Consider, concrete strength 3000 psi, cross- section of beam $10^{\prime \prime} \times 16^{\prime \prime}$.

a. $\quad-1.60 \mathrm{in}$
b. $\quad-2.50 \mathrm{in}$
c. $\quad-3.64 \mathrm{in}$
d. $\quad-5.2$ in

49. SOLUTION:

Where, $P=20$ Kip, $L=15 \mathrm{ft}, \mathrm{B}=10$ ", $\mathrm{H}=16$ " and
$\mathrm{E}=57000 \sqrt{ } \mathrm{fc}{ }^{\prime}=57000 \sqrt{ } 3000=3122018 \mathrm{psi} / 1000=3122 \mathrm{Ksi}$
Moment of inertia, $\mathrm{I}=\mathrm{BH}^{3} / 12=10 \times 16^{3} / 12=3413 \mathrm{in}^{4}$
Deflection at the tip, $\partial \mathrm{max}=-\mathrm{PL} 3 / 3 \mathrm{El}$
$\partial \max =-20 \times(15 \times 12)^{3} /[3(3122 \times 3413)]=-3.64 \mathrm{in}$

The sign is negative, because the deflection is downward.

The Correct Answer is: (c)

83. PROBLEM (Basic vertical curve elements)

A vertical curve has required for ascending 3.5\%and descending - 1.5\%grade, the design speed is $55 \mathrm{mph} \&$ the stopping sight distance is $\mathrm{S}=495 \mathrm{ft}$. Calculate the length of the vertical curve required for stopping sight distance.

a. $\quad 558.00 \mathrm{ft}$
b. $\quad 458.00 \mathrm{ft}$
c. $\quad 528.00 \mathrm{ft}$
d. $\quad 568.00 \mathrm{ft}$

83. SOLUTION:

$$
A=G 2-G 1=-1.5 \%-(+3.5 \%=-5 \%=5 \%
$$

Assume $\mathrm{S}>\mathrm{L}, \mathrm{S}=495 \mathrm{ft}$
$\mathrm{L}=2 \mathrm{~S}-2158 / \mathrm{A}=2 \times 495-2158 / 5=558.4 \mathrm{ft}$
And
$L>S$,
$\mathrm{L}=\mathrm{AS}^{2} / 2158=5 \times 495^{2} / 2158=567.71 \mathrm{ft}$ is the correct length.

The Correct Answer is: (d)

120. PROBLEM (Safety)

According to OSHA, which of the following should be considered for the maximum deflection of a platform when loaded?
a. The platform may not deflect more than $1 / 60$ of the span.
b. The platform may not deflect more than $1 / 50$ of the span.
c. The platform may not deflect more than $1 / 40$ of the span.
d. The platform may not deflect more than $1 / 30$ of the span.

120. SOLUTION:

The platform may not deflect more than $1 / 60$ of the span.

The Correct Answer is: (a)

