New Edition: Updated to 2015 Exam Design Standards

PE Civil Exam Morning Session

E-book 120 solved problems for morning session

Abul K. Howlader, PE, MsCE

2015 PE Exam Standard Specification

PE Civil Exam E-Book120-Mix Questions & Answers (pdf Format) For Breath Exam (Morning Session)

Breadth Exam (morning session): These practice exams contain 120 mixed questions and answers of five civil engineering areas. The five covered areas are construction, geotechnical, structural, transportation, and water resources & environment.

Table Contents:	No. of Problems	Page
I. Project Planning:	12	4
II. Means and Methods:	9	16
III. Soil Mechanics:	18	25
IV. Structural Mechanics:	18	45
V. Hydraulics and Hydrology:	21	66
VI. Geometrics:	9	85
VII. Materials:	18	94
VIII. Site Development:	15	113

Total Number of Problems = 120

- I. Project Planning: Number of Questions-12
- A. Quantity take-off methods
- B. Cost estimating
- C. Project schedules
- D. Activity identification and sequencing

1. **PROBLEM (**Quantity take-off methods)

A borrow pit contour elevation shown in the figure has to be cut. What is the average volume to be cut from the borrow pit?

- a. V=8330 yd³
- b. V=5660 yd³
- c. V=7530 yd³
- d. V=4400 yd³

1. SOLUTION:

Volume, $V = \Sigma[h(i,j)n]x[A/(4x27)]$ h(i,j) = Height in ft above a datum surface at row i & column j n = Number of corners, A = Area of grid in ft² Area of each grid, A=60x60=3600 ft² V = [(Height from BMxNo. of corners+....)] x [(A/(4x27)] V = [(4x1+5x2+6x2+9x1+7x2+5x1+9x2+8x4+4x1+7x3+3x1)] x [(3600/(4x27)]= 132x [(3600/(4x27)] = 4400 yd³

Total Volume of Borrow pit, V=4400 yd³

The Correct Answer is: (d)

20. PROBLEM (Temporary structures and facilities)

Determine the Factor of Safety for a braced cut in clay soil shown in Figure. Where, Length of braced cut, L=15m, Clay soil, γ = 16 kN/m³, Nc=5.14, Φ_1 '=0° and c=40 kN/m².

a 6.0 b 4.0 c 3.0 d 5.0

20. SOLUTION:

L=15m, B=4m, γ = 16 kN/m³, Nc=5.14, c=40 kN/m² and $\Phi_{1'}=0^{\circ}$ B/ $\sqrt{2}=4/\sqrt{2}=2.828>T=2m$ Or, T=2m < B/ $\sqrt{2}=2.828$ Hence, B'=T=2m and B''= $\sqrt{2}B'=2.828$ and surcharge, q=0.0 F.S=[Nc c{(1+0.2B''/L)}+cH/B']/(γ H+q), F.S=[5.14 x 40{(1+0.2 x 2.83/15)}+40 x 5/2]/(16 x 5+0.0) F.S= 3.917

The Correct Answer is: (b)

33. PROBLEM (Bearing Capacity)

Determine the ultimate load of a rectangular footing 6'x 4' with eccentric as shown in the Figure. Where, the Soil Unit Weight, $\gamma = 118 \text{ lb/ft}^3$, Ultimate Bearing Capacity, $q'_u = 3000 \text{ lb/ft}^2$, eB = 1.5' and eL = 1.75'.

- a 12.5 Kip
- b 48.5 Kip
- c 8.5 Kip
- d 31.0 Kip

33. SOLUTION:

Where, eL/L=1.75/6= 0.292 > 1/6, and eB/B=1.5/4= 0.375 > 1/6; Therefore, $B1=B(1.5-3eB/B)= 4[(1.5-(3 \times 1.5/4)]= 1.5 \text{ ft}$ $L1=L(1.5-3eL/L)= 6[(1.5-(3 \times 1.75/6)]= 3.750 \text{ ft}$ Effective Area, A'=1/2(L1B1)=1/2 (1.5 x 3.750)= 2.81 ft² q'_u=3000 lb/ft² \therefore Q_{ult}= A'x q'_u= 2.81 x 3000= 8430=8.43 Kip

Correct Solution is (c)

49. PROBLEM (Deflection)

Determine the deflection of the rectangular beam shown in the figure. A 20 Kips point load "P" is applied at its free end. Consider, concrete strength 3000 psi, cross-section of beam $10" \times 16"$.

- a. -1.60 in
- b. -2.50 in
- c. -3.64 in
- d. -5.2 in

49. SOLUTION:

Where, P=20 Kip, L=15 ft, B=10", H=16" and E=57000 $\sqrt{fc'}$ =57000 $\sqrt{3000}$ =3122018 psi/1000=3122 Ksi Moment of inertia, I=BH³/12= 10x16³/12=3413 in⁴ Deflection at the tip, ∂ max=-PL³/3EI ∂ max =-20x(15x12)³/[3(3122x3413)]=-3.64 in

The sign is negative, because the deflection is downward.

The Correct Answer is: (c)

83. **PROBLEM** (Basic vertical curve elements)

A vertical curve has required for ascending 3.5% and descending -1.5% grade, the design speed is 55 mph & the stopping sight distance is S=495 ft. Calculate the length of the vertical curve required for stopping sight distance.

a. 558.00 f	ť
-------------	---

h	150.00	£+
υ.	400.00	Iι

C	528.00ft

d. 568.00 ft

83. SOLUTION:

A=G2-G1= -1. 5% -(+3.5%)= -5%=5% Assume S>L, S=495 ft L=2S-2158/A=2 x 495-2158/ 5= 558.4 ft And L>S, L=AS²/2158=5 x 495²/2158= 567.71 ft is the correct length.

The Correct Answer is: (d)

120. PROBLEM (Safety)

According to **OSHA**, which of the following should be considered for the maximum deflection of a platform when loaded?

- a. The platform may not deflect more than 1/60 of the span.
- b. The platform may not deflect more than 1/50 of the span.
- c. The platform may not deflect more than 1/40 of the span.
- d. The platform may not deflect more than 1/30 of the span.

120. SOLUTION:

The platform may not deflect more than 1/60 of the span.

The Correct Answer is: (a)